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Abstract We briefly review the duality between moment problems and sums of squares
(s.o.s.) representations of positive polynomials, and compare s.o.s. versus nonnegative poly-
nomials. We then describe how to use such results to define convergent semidefinite pro-
gramming relaxations in polynomial optimization as well as for the two related problems of
computing the convex envelope of a rational function and finding all zeros of a system of
polynomial equations.
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1 Introduction

Relatively recent results from the theory of moments (and its dual theory of positive polyno-
mials) coupled with semidefinite programming have allowed to develop efficient numerical
schemes for polynomial optimization (or polynomial programming), i.e., global optimization
problems with polynomial data. This numerical scheme consists of a hierarchy of semidefinite
programs (SDP) of increasing size which define tighter and tighter relaxations of the original
problem, and whose associated sequence of optimal values converges to the global mini-
mum; see e.g. [15,16,28,29]. It is remarkable that standard convex duality of semidefinite
programming perfectly expresses the duality between moments and positive polynomials.

Like primal approaches in nonlinear programming that search for a local minimizer x̃ ∈
R

n , the moment approach should also be regarded as a primal approach where one now
searches not only for a global minimizer x∗ ∈ R

n but also for the sequence of moments
y∗ = (x∗)α , α ∈ N

n , i.e., a search in a lifted space (of moments). Similarly, like dual
approaches in nonlinear programming (e.g. Lagrangian and extended Lagrangian) that search
for scalar Karush-Kuhn-Tucker multipliers associated with the constraints, the s.o.s. approach
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should also be viewed as a dual approach as one also searches for multipliers of the constraints,
but now s.o.s. (instead of scalar) multipliers, hence also in a lifted space (of polynomials).

When data are polynomials (or even in some cases rational functions) this lifting process
permits to obtain convergence to a global optimum because then algebra enters the game and
one may invoke powerful representation results from real algebraic geometry. Moreover, and
crucial for practical computation, this lifting process translates into semidefinite programs,
a well studied class of convex optimization problems for which efficient public software are
available. Of course, as the general polynomial optimization problem is NP-hard, it is very
unlikely to obtain a numerical scheme with guaranteed efficiency for all problem instances
(but practice seems to reveal that SDP-relaxations exhibit fast and often finite convergence).

In this paper we review basic principles of this methodology and develop in some detail its
application in polynomial optimization, as well as in some related problems. We also com-
pare nonnegative with sums of squares (s.o.s.) polynomials and describe the duality between
moment problems and s.o.s. representations of positive polynomials.

One goal is to convince the reader that Putinar’s Positivstellensatz [31] (a powerful rep-
resentation theorem of real algebraic geometry) provides a non convex analogue for global
polynomial optimization of the celebrated Karush-Kuhn-Tucker (KKT) optimality conditions
in convex programming (whereas the latter are only necessary (local) optimality conditions
in non linear programming). To better appreciate its power, call a constraint g j (x) ≥ 0
important if when removed from the definition of the feasible set, the optimum decreases
strictly. Except for the convex case, an important constraint need not be active at a global
minimizer (think about 0–1 programs with linear inequality constraints). In KKT conditions,
an important constraint which is not active at a global minimizer is ignored as its nonnegative
KKT-multiplier λ∗j vanishes whereas in Putinar’s Positivstellensatz, an important constraint
is recognized by the fact that its multiplier (now a s.o.s. polynomial σ j ) is not trivial (but like
the KKT multiplier, it vanishes at every global minimizers x∗, i.e. σ j (x∗) = λ∗j = 0). In fact
the value σ j (x∗) of s.o.s. multipliers at any global minimizer x∗ is precisely the value of the
corresponding multiplier λ∗j in KKT conditions.

We also present the specialized s.o.s. representation results of the author [18] for problems
with a sparsity pattern. Indeed, and despite their nice features, the size of the SDP-relaxations
grows rapidly with the size of the original problem. Typically, the kth SDP-relaxation in the
hierarchy has to handle at least one LMI of size

(n+k
n

)
and

(n+2k
n

)
variables, which clearly

limits the applicability of the methodology to problems with small to medium size only. Fortu-
nately, most large size problems exhibit some sparsity pattern. Indeed, as typical in problems
with a large number of variables, each of the polynomials that describe the constraints of
the problem is “sparse”, i.e., involves a few variables only and the objective polynomial is
very often a sum of sparse polynomials. This motivated our specialized s.o.s. representation
results [18] which in particular permitted to prove convergence of the hierarchy of sparse
SDP-relaxations introduced by Waki et al. [38], and in which sparsity in the problem data is
translated into SDP-relaxations of much smaller size. For instance, in [38] the authors could
solve problems with up to a thousand variables for which the first standard SDP-relaxation
with no sparsity cannot be implemented (at least with the SDP solvers currently available).

We show how to apply the above methodology for the global minimization of a rational
function f = p/q on a compact basic semi-algebraic set K ⊂ R

n , and also for the pointwise
computation of the convex envelope f̂ of f on the convex hull co(K) of K. Finally, we also
consider the related problem of computing all real zeros of a system of polynomial equations
for which the above methodology can be adapted to yield a new semidefinite characteriza-
tion of zero-dimensional real radical ideals [22]. In contrast to previous algebraic approaches
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which compute all real and complex solutions via e.g. homotopy or Gröbner base methods,
the SDP approach of [22] is real algebraic in nature as it avoids computing any complex zero.

At last but not least, it is worth emphasing that appropriate SDP-relaxations can be defined
for a variety of seemingly very different problems but which look the same when viewed as
a particular instance of the so-called generalized problem of moments (GPM)

GPM : min
µ∈M(K)

{∫
f0 dµ :

∫
f j dµ = b j , j = 1, . . . ,m

}
(1.1)

where M(K) is a convex set of measures on K ⊂ R
n , such that all f j ’s are integrable with

respect to every measure µ ∈ M(K); for more details see Lasserre [20]. To our knowl-
edge, GloptiPoly3 [10] (an extension of GloptiPoly [7]) is the first software package devoted
to solve the GPM (at least small to medium size problems). The GPM has developments
and impact in various area of Mathematics like algebra, Fourier analysis, functional analysis,
operator theory, probability and statistics. It also has a large number of important applications
in various fields like optimization, probability, finance, control, signal processing, chemistry,
cristallography, tomography, etc. For an account of various methodologies as well as some
of potential applications, the interested reader is referred to e.g. Akhiezer [1], Akhiezer and
Krein [2], the nice collection of papers [13] and [20].

The paper is organized as follows: We first introduce some notation and definitions and
then review some basic results on moment problems and s.o.s. representations of positive
polynomials. In Sect. 3 we provide a hierarchy of SDP-relaxations for computing the global
minimum of a rational function on a compact basic semi-algebraic set. Convergence results
as well as a sufficient condition to detect finite convergence (hence global optimality) are pre-
sented. For clarity of exposition, the proof of the main theorem is postponed to an appendix.
In Sect. 4 we compare Putinar Positivstellensatz with the celebrated KKT local optimality
conditions. We also provide a hierarchy of SDP-relaxations for the pointwise computation
of the convex envelope of a rational function, as well as for computing all real zeros of a
system of polynomials equations.

2 Moments and sums of squares

2.1 Notation

In R
n we always consider the usual Borel σ -algebra B and so a finite measure on R

n is always
understood as a finite Borel measure on B.

For a real symmetric matrix A, the notation A � 0 (resp. A � 0) stands for A is positive
semidefinite (resp. positive definite), whereas uT denotes the transpose of a vector u. Let N be
the set of natural numbers, and let R[X ] (= R[X1, . . . , Xn]) be the ring of real polynomials
in the n variables X1, . . . , Xn . Let �2 ⊂ R[X ] be the set of polynomials that are sums of
squares (s.o.s.).

With d ∈ N, let s(d) := (n+d
n

)
, and let ud(X) ∈ R

s(d) be the column vector

ud(X) = (1, X1, . . . , Xn, X2
1, X1 X2, . . . , Xd

n )
T ,

whose components form the usual canonical basis of the vector space R[X ]d (of dimension
s(d)) of real polynomials of degree at most d .
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Given a infinite sequence y := {yα}α∈Nn indexed in the canonical basis u∞(X), let
L y : R[X ] → R be the linear mapping

f ∈ R[X ]
(

=
∑

α∈Nn

fα Xα
)

	−→ L y( f ) :=
∑

α∈Nn

fα yα, (2.1)

and let f = { fα} ∈ R
s(d) be the vector of coefficients of f ∈ R[X ]d in the basis ud(X).

Moment matrix Let Md(y) be the s(d)× s(d) real matrix with rows and columns indexed
in the basis ud(X), and defined by:

Md(y)(α, β) = yα+β, α, β ∈ N
n, |α|, |β| ≤ d, (2.2)

where for every α ∈ N
n , the notation |α| stands for

∑n
i=1 αi .

Equivalently, Md(y) = L y(ud(X)ud(X)T ), meaning that L y is applied entrywise to the
polynomial matrix ud(X)ud(X)T . The matrix Md(y) is called the moment matrix associated
with the sequence y (see e.g. Curto and Fialkow [6] and Lasserre [16]). If y has a representing
measure µy (i.e., if yα =

∫
Xαdµy for every α ∈ N

n) then

〈f,Md(y)f〉 =
∫

f 2 dµy ≥ 0, ∀ f ∈ R[X ]d , (2.3)

so that Md(y) � 0. A measure µ is said to be moment determinate if there is no other mea-
sure with same moments. In particular, and as an easy consequence of the Stone-Weierstrass
theorem, every measure with compact support is moment determinate; see e.g. Berg [4], or
Maserick and Berg [24].

There is a nice sufficient condition to ensure that a sequence y has a unique representing
measure. It is due to Nussbaum [27] and is an extension to the multivariate case of Carleman’s
condition in the univariate case. Namely, if

∞∑

k=1

L y(X
2k
i )

−1/2k = +∞, i = 1, . . . , n (2.4)

then y has a unique representing measure; see e.g. Berg [4, Theor. 5].
Similarly, if for some a, c > 0, |yα| ≤ ca|α| for all α ∈ N

n , then y has a unique rep-
resenting measure, with support contained in the ball [−a, a]n ; again see Berg [4, Theor.
9]. Finally, if the marginal distributions of a measure µ are determinate, then so is µ; see
Petersen [30].
Localizing matrix Similarly, given y = {yα} and θ ∈ R[X ], let Md(θy) be the s(d)× s(d)
matrix defined by:

Md(θy) := L y(θ(X)ud(X)ud(X)
T ),

i.e., L y is applied entrywise to the matrix polynomial θ(X)ud(X)ud(X)T . The matrix
Md(θy) is called the localizing matrix associated with the sequence y and the polynomial
θ (see again Lasserre [16]). Notice that the localizing matrix with respect to the constant
polynomial θ ≡ 1 is the moment matrix Md(y) in (2.2).

If y has a representing measure µy with support contained in the level set {x ∈ R
n :

θ(x) ≥ 0} (where θ ∈ R[X ]), then

〈f,Md(θy)f〉 =
∫

f 2θ dµy ≥ 0 ∀ f ∈ R[X ]d , (2.5)

so that Md(θy) � 0.
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2.2 Nonnegative versus s.o.s. polynomials

When is a nonnegative homogeneous polynomial f ∈ R[X ]2d a s.o.s. polynomial? It was
recognized and proved by Hilbert as early as 1888 that apart from the three special cases
(n, 2d) = (1, 2d), (n, 2), (2, 4), not all nonnegative polynomials are s.o.s. and this gave
birth to Hilbert’s 17th problem on the representation of nonnegative polynomials as a sum
of squares of rational functions, later solved by E. Artin in 1927. Hilbert’s result was not
constructive and amazingly, only in 1967 was produced the first concrete example of a non-
negative polynomial that is not s.o.s., the well-known bivariate Motzkin polynomial.

(X, Y ) 	→ 1+ X2Y 2(X2 + Y 2 − 3)

When compared to nonnegative polynomials, s.o.s. polynomials have a important feature
which is very attractive from a computational viewpoint. Whereas one does not how to check
efficiently whether a given polynomial f ∈ R[X ]2d is nonnegative, checking whether f is
s.o.s. reduces to solving a semidefinite program (SDP), a convex optimization problem with
nice computational complexity and for which efficient (public software) solvers are now
available. Indeed, write

ud(X) ud(X)
T =

∑

α∈Nn

BαXα,

for some symmetric matrices (Bα) ∈ R
s(d)×s(d). Then f ∈ R[X ]2d is s.o.s. if and only if

there exists some positive semidefinite matrix F ∈ R
s(d)×s(d) such that

F � 0; fα = trace(BαF), ∀α ∈ N
n . (2.6)

Checking (2.6) is just solving a SDP.
Therefore it is important to understand the gap between nonnegative and s.o.s. polynomi-

als. On the negative side, Blekherman [5] showed that when the degree d is fixed there are
many more nonnegative polynomials than s.o.s. and the larger n, the larger the gap. On the
positive side, introducing the l1-norm in R[X ]

(

f =
∑

α∈Nn

fαXα
)

	→ ‖ f ‖1 :=
∑

α∈Nn

| fα|,

Berg [4] showed that the cone�2 is dense in the space of polynomials that are nonnegative on
the box [−1, 1]n ⊂ R

n . But this result is not constructive and we provide below the following
more precise results. Given r ∈ N arbitrary, introduce the two polynomials �r , θr ∈ R[X ]

X 	→ θr (X) :=
n∑

i=1

r∑

k=0

X2k
i

k! ; X 	→ �r (X) := 1+
n∑

i=1

X2r
i (2.7)

and given f ∈ R[X ] and ε > 0, define

f 1
εr := f + ε θr ; f 2

εr := f + ε �r .

Theorem 2.1 (Lasserre [19], Lasserre and Netzer [21])

(a) If f ∈ R[X ] is nonnegative then for every ε > 0 there exists r(ε, f ) such that f 1
εr is

s.o.s. for all r ≥ r(ε, f ) and ‖ f − f 1
εr‖1 → 0 as ε ↓ 0 (and r ≥ r(ε, f )).

(b) If f ∈ R[X ] is nonnegative on [−1, 1]n then for every ε > 0 there exists r(ε, f ) such
that f 2

εr is s.o.s. for all r ≥ r(ε, f ) and ‖ f − f 2
εr‖1 → 0 as ε ↓ 0 (and r ≥ r(ε, f )).
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For a detailed proof see Lasserre [19] and Lasserre and Netzer [21]. Theorem 2.1(b) pro-
vides an explicit construction of an approximating sequence of s.o.s. for the denseness result
of Berg [4]. It suffices to add to f essentials monomials X2r

i with a coefficient ε > 0 and suffi-
ciently high degree 2r . Observe that in addition to the l1-norm convergence ‖ f − f 1

εr‖1 → 0,
the convergence is also uniform on compact sets! Notice that a polynomial f nonnegative on
the whole R

n (hence on the box [−1, 1]n) can also be approximated by the s.o.s. polynomial
f 2
εr of Theorem 2.1(b) which is simpler than the s.o.s. approximation f 1

εr . However, in con-
trast to the latter, the approximation f ≈ f 2

εr is not uniform on compact sets, and is really
more appropriate for polynomials nonnegative on [−1, 1]n only (and indeed the approxima-
tion f ≈ f 2

εr is uniform on [−1, 1]n). In [21] we also prove that r( f, ε) in Theorem 2.1(b)
does not depend on the explicit choice of the polynomial f but only on:

• ε and the dimension n,
• the degree and the size of the coefficients of f .

Therefore, if one fixes these four parameters, we find an r such that the statement of The-
orem 2.1(b) holds for any f nonnegative on [−1, 1]n , whose degree and size of coefficients
do not exceed the fixed parameters.

Finally, consider the case of a (not necessarily compact) real variety V ⊂ R
n defined by

V := { x ∈ R
n : g j (x) = 0, j = 1, . . . ,m } (2.8)

for some polynomials g j ∈ R[X ].
Theorem 2.2 (Lasserre [17]) Let V ⊂ R

n be the real variety in (2.8), and let θr be as in
(2.7). If f ∈ R[X ] is nonnegative on V then for every ε > 0, there exists r(ε, f ) ∈ N and
nonnegative scalars {λ j }mj=1 such that for all r ≥ r(ε),

f 1
εr (= f + ε θr ) = q −

m∑

j=1

λ j g2
j (2.9)

for some s.o.s. polynomial q ∈ �2. In addition, ‖ f − f 1
εr‖1 → 0, as ε ↓ 0.

Again notice that (2.9) is a certificate of positivity of f on V and the approximation f ≈ f 1
εr

on V , is uniform on compact subsets of V .

We next present two powerful representation results for a polynomial f positive on a
compact basic semi-algebraic set K ⊂ R

n , and their dual counterparts, i.e., conditions for a
sequence y = (yα), α ∈ N

n , to have a representing measure µ with support contained in K.

2.3 Positivstellensatz for compact sets and their dual version

We here present some basic fondamental results on the duality between moments and sums
of squares which transpires in so-called Positivstellensatz theorems on the representation of
polynomial positive on a compact basic semi-algebraic set.

Let K ⊂ R
n be the basic closed semi-algebraic set defined by

K := { x ∈ R
n | g j (x) ≥ 0, j = 1, . . . ,m} (2.10)

for some family {g j }mj=1 ⊂ R[X ], and let g0 ≡ 1.
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Next, denote by P(g) ⊂ R[X ] (resp. Q(g) ⊂ R[X ]) the preordering (resp. the quadratic
module) generated by the g j ’s. That is, f ∈ P(g) if

f =
∑

J⊆{1,...,m}
σJ

⎛

⎝
∏

j∈J

g j

⎞

⎠ with σJ ∈ �2 ∀ J ⊆ {1, . . . ,m} (2.11)

(with the convention gJ :=∏ j∈J g j ≡ 1 if J = ∅). Similarly, f ∈ Q(g) if

f =
m∑

j=0

σ j g j with σ j ∈ �2 ∀ j = 0, 1, . . . ,m. (2.12)

Theorem 2.3 (Schmüdgen [34]) Assume that K defined in (2.10) is compact.

(a) If f ∈ R[X ] is strictly positive on K then f ∈ P(g), i.e.,

f =
∑

J⊆{1,...,m}
σJ

⎡

⎣
∏

j∈J

g j

⎤

⎦ (2.13)

for some s.o.s. polynomials {σJ } ⊂ �2.
(b) Let y = (yα) ⊂ R be an infinite sequence indexed in the canonical basis (Xα) of R[X ].

Then y has a representing measure with support contained in K if and only if

L y

⎛

⎝ f 2

⎡

⎣
∏

j∈J

g j

⎤

⎦

⎞

⎠ ≥ 0 ∀J ⊆ {1, . . . ,m}, ∀ f ∈ R[X ]. (2.14)

This powerful and elegant result shows that two apriori different results in functional anal-
ysis and algebra are in fact two dual facets of the same problem : representing a polynomial
positive on K and representing a moment sequence by a measure with support contained in
K. Indeed, in Theorem 2.3(a) one obtains a certificate of positivity on K for a polynomial
f ∈ R[X ], whereas in (b) one obtains a constructive means of checking whether a sequence
y has a representing measure on K.

In addition, testing whether (2.13) is satisfied with polynomials σJ of degree at most say
2d , reduces to solving a SDP. Similarly testing the condition (2.14) for all f ∈ R[X ]d also
reduces to solving a SDP. However notice that in (2.13) the summation involves 2m terms,
and similarly in (2.14) there are 2m conditions to test. From a computational viewpoint
this is rather annoying. Fortunately, under some mild condition on the polynomials g j ’s that
describe K, Putinar [31] and Jacobi and Prestel [11] proved a more convenient representation
result.

Assumption 2.1 The set K in (2.10) is compact. There exists u ∈ R[X ] such that u = u0 +∑m
j=1 u j g j for some s.o.s. polynomials {u j }mj=0 ⊂ �2, and the level set {x ∈ R

n |u(x) ≥ 0}
is compact.

Remark 2.4 For instance, Assumption 2.1 is automatically satisfied if

• all g j ’s are affine in which case K is a polytope.
• the level set {x ∈ R

n : g j (x) ≥ 0} is compact for some j ∈ {1, . . . ,m}.
In addition if M − ‖x‖2 ≥ 0 for all x ∈ K then it suffices to add the redundant constraint
gm+1(x) ≥ 0 in the definition (2.10) of K (with gm+1 ∈ R[X ] being the quadratic polynomial
M − ‖X‖2), and Assumption 2.1 is satisfied.
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Theorem 2.5 (Putinar [31]) With K ⊂ R
n as in (2.10), let Assumption 2.1 hold.

(a) If f ∈ R[X ] is strictly positive on K then f ∈ Q(g), i.e.,

f =
m∑

j=0

σ j g j (2.15)

for some s.o.s. polynomials {σ j } ⊂ �2.
(b) Let y = (yα) ⊂ R be an infinite sequence indexed in the canonical basis (Xα) of R[X ].

Then y has a representing measure with support contained in K if and only if

L y( f 2 g j ) ≥ 0 ∀ j = 0, . . . ,m, ∀ f ∈ R[X ]. (2.16)

The power of Theorem 2.5 is to replace the 2m terms in (2.13) or the 2m conditions in
(2.14) with only m+ 1 terms or conditions in (2.15) and (2.16) respectively, a very attractive
feature from a computational viewpoint. In addition, the price to pay is very small as in the
worst case it suffices to add a redundant quadratic constraint in the definition (2.10) of K;
see Remark 2.4 above.

2.4 Specialized representation results with sparsity properties

If there is no coupling between some subsets of variables in the polynomial f or the poly-
nomials g j that define the set K, a natural question that arises is whether there exists a
representation result (or a Positivstellensatz) that preserves this property. In view of the
practical computational implications, this is a very important issue because in many (if not
most) problems with a large number of variables, some sparsity pattern is present as all
monomials of the polynomial data f and g j often involve a few variables only.

First consider the simple case of three sets of variables. Let R[X, Y, Z ] be the ring of
real polynomial in the variables (X1, . . . , Xn), (Y1, . . . , Ym) and (Z1, . . . , Z p). Let Kxy ⊂
R

n+m, Kyz ⊂ R
m+p , and K ⊂ R

n+m+p be basic compact semi-algebraic sets defined by

Kxy = { (x, y) ∈ R
n+m | g j (x, y) ≥ 0, j ∈ Ixy} (2.17)

Kyz = { (y, z) ∈ R
m+p | hk(y, z) ≥ 0, k ∈ Iyz} (2.18)

K = { (x, y, z) ∈ R
n+m+p | (x, y) ∈ Kxy; (y, z) ∈ Kyz } (2.19)

for some polynomials {g j } ⊂ R[X, Y ], {hk} ⊂ R[Y, Z ], and some finite index sets Ixy, Iyz ⊂
N. Let P(g) ⊂ R[X, Y ] and P(h) ⊂ R[Y, Z ] be the preordering generated by {g j } j∈Ixy and
{hk}k∈Iyz , respectively. Similarly, let Q(g)⊂R[X, Y ] and Q(h)⊂R[Y, Z ] denote the qua-
dratic modules.

Theorem 2.6 Let Kxy ⊂ R
n, Kyz ⊂ R

m, and K ⊂ R
n+m+p be the basic compact semi-

algebraic sets defined in (2.17)-(2.10), and assume that K has nonempty interior. Let f ∈
R[X, Y ] + R[Y, Z ].
(a) If f is positive on K then f ∈ P(g)+ P(h).

(b) If N − ‖(X, Y )‖2 ∈ Q(g) and/or N − ‖(Y, Z)‖2 ∈ Q(h) for some scalar N, and if f
is positive on K, then in (a) one may replace P(g) with Q(g) and/or P(h) with Q(h).

Hence the absence of coupling between the two sets of variables X and Z in the original
data f, g j , hk , is also reflected in the specialized sparse representations of Theorem 2.6(a)-
(b). Indeed one may replace the preordering P(g, h) ⊂ R[X, Y, Z ] (resp. the quadratic
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module Q(g, h) ⊂ R[X, Y, Z ]) generated by the g j ’s and hk’s with the smaller preor-
derings P(g) ⊂ R[X, Y ] and P(h) ⊂ R[Y, Z ] (resp. the quadratic modules Q(g) and
Q(h) ⊂ R[Y, Z ]).

Remarkably, Theorem 2.6 can be extended to more general sparsity patterns provided that
some condition called the running intersection property (which incidentally happens to be
well-known in the graph theory) holds.

With R[X ] = R[X1, . . . , Xn], let I0 := {1, . . . , n} be the union ∪p
k=1 Ik of p subsets Ik ,

k = 1, . . . , p, with cardinal denoted nk . Let R[X (Ik)] denote the ring of polynomials in the
nk variables X (Ik) = {Xi | i ∈ Ik}, and so R[X (I0)] = R[X ].
Assumption 2.2 Let K ⊂ R

n be as in (2.10). There is M > 0 such that ‖x‖∞ < M for all
x ∈ K.

In view of Assumption 2.2, one has ‖X (Ik)‖2 ≤ nk M2, k = 1, . . . , p, and therefore, in
the definition (2.10) of K, we add the p redundant quadratic constraints

gm+k(x) ≥ 0 with gm+k(X) := nk M2 − ‖X (Ik)‖2, k = 1, . . . , p, (2.20)

and set m′ = m + p, so that K is now defined by:

K := {x ∈ R
n | g j (x) ≥ 0, j = 1, . . . ,m′ }. (2.21)

Notice that gm+k ∈ R[X (Ik)], for all k = 1, . . . , p.

Assumption 2.3 Let K ⊂ R
n be as in (2.21). The index set J = {1, . . . ,m′} is partitioned

into p disjoint sets Jk , k = 1, . . . , p, and the collections {Ik} and {Jk} satisfy:

(i) For every j ∈ Jk , g j ∈ R[X (Ik)], that is, for every j ∈ Jk , the constraint g j (x) ≥ 0 is
only concerned with the variables X (Ik) = {Xi | i ∈ Ik}.

(ii) The objective function f ∈ R[X ] can be written

f =
p∑

k=1

fk, with fk ∈ R[X (Ik)], k = 1, . . . , p. (2.22)

Theorem 2.7 (Lasserre [18]) Let Assumption 2.2 and 2.3 hold. Let K ⊂ R
n be as in (2.21)

(i.e. K as in (2.10) with the additional redundant quadratic constraints (2.20)), and with
nonempty interior. Assume that for every k = 1, . . . , p − 1,

Ik+1

⋂
⎛

⎝
k⋃

j=1

I j

⎞

⎠ ⊆ Is for some s ≤ k. (2.23)

If f ∈ R[X ] is strictly positive on K then

f =
p∑

k=1

⎛

⎝ qk +
∑

j∈Jk

q jk g j

⎞

⎠, (2.24)

for some s.o.s. polynomials {qk, q jk} ⊂ R[X (Ik)], k = 1, . . . , p.

Hence under the running intersection property (2.23), the absence of coupling of variables
in the original data is preserved in the representation (2.24). In addition to be of self-interest,
Theorem 2.7 permits to prove convergence of the specialized (and efficient) sparse SDP-
relaxations introduced in Waki et al. [38] for polynomial optimization problems with a large
number of variables. For more details see Lasserre [18] and Sect. 4.1 below.
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3 SDP-relaxations for polynomial optimization

Consider the global optimization problem:

P : f ∗ := min
x
{ f (x) : x ∈ K } (3.1)

where K ⊂ R
n is the basic semi-algebraic set in (2.10) and f : R

n → R is the rational
function p/q with p, q ∈ R[X ]. Convergent SDP-relaxations for P when q ≡ 1 were first
proposed in Lasserre [16] and later extended in Jibetean and de Klerk [12] for q �= 1. One
assumes that q > 0 on K. Indeed if q changes sign on K then unless p and q have common
real zeros, f ∗ = −∞.

Let v j := �deg g j/2� for every j = 0, 1, . . . ,m (in particular v0 = 0 as g0 ≡ 1), and for
r ≥ r0 := max[deg p,max j v j ], consider the semidefinite program:

Qr :

⎧
⎪⎨

⎪⎩

inf
y

L y(p)

s.t Mr−v j (g j y) � 0, j = 0, 1, . . . ,m
L y(q) = 1

, (3.2)

with optimal value denoted by inf Qr (and by min Qr if the infimum is achieved). Notice
that by construction, Qr contains only moment variables yα with |α| ≤ 2r .

Proposition 3.1 Let M(K) be the space of finite Borel measures on K and consider the
optimization problem

P : min
µ∈M(K)

{ ∫
p dµ :

∫
q dµ = 1

}
(3.3)

with optimal value denoted by inf P . Then f ∗ = inf P = min P and

inf Qr ≤ f ∗ (= inf P) ∀r ≥ max
j=1,...,m

v j . (3.4)

Proof Indeed let x∗ ∈ K be a global minimizer of P, and let µ be the weighted Dirac mea-
sure q(x∗)−1δx∗ . It is feasible in P with value p(x∗)/q(x∗) = f ∗. On the other hand, let
µ ∈ M(K) be feasible in P . As p(x) ≥ f ∗q(x) for all x ∈ K and µ is supported on K,∫

pdµ ≥ f ∗
∫

qdµ = f ∗, which proves that f ∗ = inf P = min P . Next let y∗ = (y∗α) be
the sequence of moments of the Dirac measure q(x∗)−1δx∗ , i.e., y∗α = q(x∗)−1(x∗)α for all
α ∈ N

n . Then obviously y∗ is a feasible solution of the SDP Qr with associated value f ∗,
which proves that inf Qr ≤ f ∗. ��

The dual Q∗
r of Qr is the SDP

Q∗
r :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

sup
λ,{h j }

λ

s.t. p − λ q =
m∑

j=0

h j g j ,

{h j } ⊂ �2 and deg h j + deg g j ≤ 2r

(3.5)

whose optimal value is denoted by sup Q∗
r , or min Q∗

r if the supremum is achieved at some
optimal solution (λ, {h j }).

Of course, by weak duality between dual pairs of SDPs,

sup Q∗
r ≤ inf Qr ≤ inf P ∀ r ≥ r0 (3.6)

holds true.

123



J Glob Optim (2009) 45:39–61 49

Theorem 3.2 Let K be as in (2.10), and let Assumption 2.1 hold. For every r0 ≤ r ∈ N, let
Qr be the SDP-relaxation defined in (3.2). Then:

(a) inf Qr ↑ f ∗ as r → ∞. Moreover, if K has a nonempty interior then sup Q∗
r =

max Q∗
r = inf Qr for all sufficiently large r .

(b) If inf Qr1 = f ∗ for some r1 (hence for all r ≥ r1), and if K has nonempty interior, then
in the dual Q∗

r , one obtains:

p − f ∗ q =
m∑

j=0

σ j g j and σ j (x
∗)g j (x

∗) = 0 ∀ j = 0, 1, . . . ,m, (3.7)

for some s.o.s. polynomials σ j ∈ �2 with deg σ j + deg g j ≤ 2r1, for all j = 1, . . . ,m,
and where x∗ ∈ K is any global minimizer of P.

For a proof see Appendix section.

Remark 3.3 If q ≡ 1 then one retrieves the SDP-relaxations introduced in Lasserre [16].
Problem P with rational function f = p/q was first considered in Jibetean and de Klerk [12]
who proved the convergence of the dual SDP-relaxations Q∗

r .

3.1 Detecting optimality

Theorem 3.2 guarantees that the SDP-relaxations {Qr } in (3.2) converge to the desired opti-
mal value of P. However, the convergence proved in Theorem 3.2 is only asymptotic as
r → ∞. In some cases, finite convergence takes place, and below we present a sufficient
condition to detect whether it has occured at some SDP-relaxation Qr .

Theorem 3.4 Let v := max j=1,...,m v j , and let Qr be the SDP-relaxation defined in (3.2).
Assume that Qr has an optimal solution y that satisfies

rank Mr (y) = rank Mr−v(y) =: s (3.8)

Then y is the vector of moments of some s-atomic measure µ with support contained in K,
and µ is an optimal solution of P. That is, µ is a convex combination of Dirac measures on
s points x( j) ∈ K, j = 1, . . . , s, all global minimizers of P.

Proof From a result of Curto and Fialkow [6, Theor. 1.6], also proved in Laurent [23], (3.8)
implies that y is the vector of moments of some measure µ finitely supported on exactly s
points {x(i)}si=1 ⊂ K. In addition we also have 1 = L y(q) =

∫
q dµ. which proves that µ

is feasible for P in (3.3). But this fact combined with Proposition 3.1 yields

f ∗ = min P = min P ≥ min Qr = L y(p) =
∫

p dµ,

and so µ must be an optimal solution of P, the desired result. ��
It is worth noticing that Theorem 3.4 does not require Assumption 2.1 to hold. The

hierarchy of SDP-relaxations (3.2) can always be defined provided only that K is a basic
closed semi-algebraic set. Even though the convergence inf Qr ↑ inf P is not guaranteed
any more, finite convergence may still happen if condition (3.8) holds true at some optimal
solution of Qr (whenever Qr is solvable).

In addition, if (3.8) is satisfied then one can extract the s global mimimizers x( j) ∈
K, j = 1 . . . , s, via the numerical algebra procedure defined in Henrion and Lasserre [9].
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Problem (3.1) is a particular instance of the GPM (1.1) and to the best of our knowledge,
Gloptipoly3 [10] is the first (public) software devoted to solving the GPM (at least small to
medium size problems). It is an extension of GloptiPoly [7] primarily devoted to global opti-
mization; to solve (3.2) a GloptiPoly3 user may choose its favorite SDP solver, e.g. among
CSDP, DSDP, SDPA, SDPLR, SDPT3, and SEDUMI.1 For a comparison between those solv-
ers see e.g. Mittelmann [26]. It is worth noticing that the procedure for extraction of global
minimizers, based on the stopping rank criterion (3.8) and detailed in [9], is implemented in
GloptiPoly3.

3.2 Karush-Kuhn-Tucker versus Putinar’s Positivstellensatz

In this section we relate Putinar’s Positivstellenstaz [31] with the celebrated Karush-Kuhn-
Tucker (KKT) optimality conditions in Nonlinear Programming. Let K ⊂ R

n be defined as
in (2.10) and consider problem P in (3.1).

Hence f (x)− f ∗ ≥ 0 on K, or, equivalently (as q > 0 on K compact) p − f ∗q ≥ 0 on
K, i.e., the polynomial p− f ∗q is nonnegative on K. Recall that under Assumption 2.1, for
every ε > 0, the polynomial p− f ∗q + ε (strictly positive on K) has Putinar representation
(2.15), whereas the polynomial p − f ∗q (only nonnegative on K) may not have.

Proposition 3.5 Let x∗ ∈ K be a global minimizer of P and assume that the polynomial
X 	→ p(X)− f ∗q(X) (which is only nonnegative on K) has Putinar representation (2.15),
i.e.,

p − f ∗q =
m∑

j=0

σ j g j (3.9)

for some s.o.s. polynomials σ j ∈ �2, j = 0, . . . ,m. Then:

(a) For every r ≥ r1 := 1
2 max j [deg σ j+deg g j ], the SDP-relaxations Qr and Q∗

r are exact,
that is,

sup Q∗
r = max Q∗

r = inf Qr = min Qr .

(b) In addition:

g j (x
∗) σ j (x

∗) = 0, ∀ j = 0, . . . ,m. (3.10)

∇ f (x∗) =
m∑

j=1

λ∗j ∇g j (x
∗) (3.11)

with λ∗j = σ j (x∗)/q(x∗) ≥ 0 for all j = 1, . . . ,m.

Proof As x∗ is a global minimizer of P, from (3.9) we obtain

0 =
m∑

j=0

σ j (x
∗) g j (x

∗) ≥ 0,

1 For a description of the various SDP solvers the interested reader is referred to https://projects.coin-or.
org/Csdp for CSDP, http://www-unix.mcs.anl.gov/DSDP/ for DSDP, http://sdpa.indsys.chuo-u.ac.jp/sdpa/
download.html#sdpam for SDPA, http://dollar.biz.uiowa.edu/burer/software/SDPLR/ for SDPLR, http://
www.math.nus.edu.sg/mattohkc/sdpt3.html for SDPT3, and http://sedumi.mcmaster.ca/ for SeDuMi.
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and so (3.10) holds because each term of the sum is nonnegative. Next, differentiate at x∗,
use (3.10) and the fact that each σ j is s.o.s. to obtain

∇ p(x∗)− f ∗∇q(x∗) =
m∑

j=1

σ j (x
∗)∇g j (x

∗).

Dividing by q(x∗) > 0 and recalling that f ∗ = p(x∗)/q(x∗), one obtains

∇ f (x∗) = ∇
(

p

q

)

x=x∗
= ∇ p(x∗)

q(x∗)
− p(x∗)

q(x∗)2
∇q(x∗) =

m∑

j=1

σ j (x∗)
q(x∗)

∇g j (x
∗),

which is simply (3.11). ��
Hence, the representation (3.9) can be viewed as a global optimality condition of the

“Karush-Kuhn-Tucker” type, where the multipliers are now nonnegative polynomials instead
of nonnegative constants.

In the convex case (i.e. when f is convex and the g j ’s are concave) (3.11) implies that
x∗ ∈ K is a global mimimizer of the Lagrangian

X 	→ L(X, λ∗) := f (X)− f ∗ −
m∑

j=1

λ∗j g j (X), (3.12)

and L(x∗, λ∗) = 0. That is, L(X, λ∗) is nonnegative on the whole R
n . But this property is

valid only in the convex case. On the other hand, and even in the non convex case, when
(3.9) holds then the extended Lagrangian

X 	→ L(X, σ ) := p(X)− f ∗q(X)−
m∑

j=1

σ j (X) g j (X) (= σ0(X))

with s.o.s. multipliers σ j ’s is nonnegative on the whole R
n (as σ0 is s.o.s.), with L(x∗, σ ) = 0,

so that x∗ is a global minimum of L(X, σ ). When q > 0 on R
n , one obtains that

f (X)− f ∗ −
m∑

j=1

σ j (X)

q(X)
g j (X)

is nonnegative on R
n even in the non convex case (to compare with (3.12)). So Putinar Posi-

tivstellensatz can be viewed as the non convex analogue for global (polynomial) optimization
of the KKT conditions in the convex case.

In general, and in contrast to the usual KKT optimality conditions, the s.o.s. polynomial
multiplier σ j ∈ R[X ] associated with a constraint g j (X) ≥ 0 non active at a global minimizer
x∗ ∈ K, may not be identically null, but one retrieves that λ∗j = σ j (x∗)/q(x∗) = 0, i.e., σ j

vanishes at x∗. Indeed, even if not active at x∗, that constraint may be important, meaning
that if it is removed from the definition (2.10) of the set K, then the global minimum may
decrease strictly. In the latter case, g j must play a role in Putinar representation (3.7), whence
the existence of a nontrivial multipier σ j . In contrast, the KKT conditions do not “see” g j

because λ∗j = 0, that is, the Lagrangian L(X, λ∗) does not contain g j . Moreover the KKT
conditions are still valid at x∗ for the problem without this constraint. To see this, consider
the following toy example.

Example 3.1 Consider P defined by:

P : f ∗ = min
x
{ −x : x2 = 1; x ≤ 1/2 }
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where n = 1, f (X) = −X (i.e. p(X) = −X and q ≡ 1), g1(X) = X2−1, g2(X) = 1/2−X .
The first constraint is the equality constraint g1(X) = 0 and the optimal value is f ∗ = 1.
The KKT multipliers are (λ∗1, λ∗2) = (1/2, 0) and the Lagrangian L(X, λ∗) = −X − 1 −
(X2 − 1)/2 = −(X + 1)2/2 is not convex and does not contain g2. On the other hand,

L(X, σ ) = −X − 1− (X2 − 1)(X + 3/2)− (1/2− X)(X + 1)2,

with σ0 ≡ 0, with s.o.s. multiplier σ2(X) = (X + 1)2 and where the multiplier σ1(X) =
(X + 3/2) is not required to be s.o.s. because the corresponding constraint is an equality
constraint. Notice that the s.o.s. multiplier σ2(X) = (X + 1)2 is not trivial but vanishes
at the global minimizer x∗ = −1 like the KKT multiplier λ∗2 = 0. Indeed, the constraint
g2(X) ≥ 0 is important in Putinar’s representation (3.7) of the polynomial f − f ∗ because if
it is removed then the optimal value jumps from 1 to −1 with new global minimizer x̂ = 1.
Therefore the s.o.s. multiplier σ2 cannot be trivial (in contrast to the KKT multiplier λ∗2 = 0).

4 Extensions and related problems

In this section we first complete results of Sect. 3 by considering problems with some sparsity
pattern in the data. We also consider the following two related problems:

• Systems of polynomial equations: Obtaining one real solution can be done by looking
for the one that minimizes some given polynomial criterion (or some rational function).
We are then back to problem P in (3.1) where equality constraints are treated as two
opposite inequality constraints in the definition (2.10) of K. Another important problem
is to obtain all real solutions when there are finitely many.

• With K being the basic semi-algebraic set defined in (2.10), co(K) its convex hull, com-
pute pointwise the convex envelope f̂ : co(K)→ R of a rational function f : K → R.

4.1 SDP-relaxations for problems with sparsity

Despite the nice features of the SDP-relaxations (3.2), their size grows rapidly with the size
of the original problem. Typically, the rth SDP-relaxation Qr has to handle at least one LMI
of size

(n+r
n

)
and

(n+2r
n

)
variables, which clearly limits the applicability of the methodology

to problems with small to medium size only. One way to extend the applicability of the
methodology to problems of larger size, is to take into account sparsity in the original data,
frequently encountered in practical cases. Indeed, as typical in many applications of interest,
f as well as the polynomials {g j } that describe K, are sparse, i.e., each monomial of f and
each polynomial g j are only concerned with a small subset of variables.

In Waki et al. [38] the authors have built up a hierarchy of SDP-relaxations in the spirit
of (3.2) but where sparsity is taken into account. Sometimes, a sparsity pattern can be “read”
from the data of P but not always, and in [38], the authors use a systematic procedure to detect
and structure sparsity in P, via the so-called chordal extension of the correlation sparsity
pattern graph (csp graph); the csp graph has as many nodes as variables, and a link beween
two nodes (i.e., variables) means that these two variables both appear in a monomial of the
objective function or in some inequality constraint g j ≥ 0 of P. Once a sparsity pattern has
been detected, they define a simplified “sparse” version of the SDP-relaxations (3.5).

Briefly, recall the notation of Sect. 2.4 where I = {1, . . . , n} = ∪p
j=1 I j with card I j = n j ,

and J = {1, . . . ,m′} = ∪p
k=1 Jk (the latter being a partition). Let y be sequence y = (yα),
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with α ∈ N
n , and |α| ≤ 2r . For the SDP-relaxation Qr in (3.2), instead of considering a

big moment matrix Mr (y), now one rather defines p smaller moment matrices Mk
r (y) with

rows and columns indexed in the canonical basis of R[X (Ik)]r , k = 1, . . . , p. Similarly,
for every j = 1, . . . ,m′, the big localizing matrix Mr−v j (g j y) is now replaced with the
smaller localizing matrix Mk

r−v j
(g j y)with rows and columns indexed in the canonical basis

of R[X (Ik)]r−v j if j ∈ Jk . Equivalently, the dual SDP Q∗
r now reads (in case where q ≡ 1)

Q∗
r : max

λ,{σ j }

⎧
⎨

⎩
λ : f − λ =

p∑

k=1

⎛

⎝ψk +
∑

j∈Jk

σ j g j

⎞

⎠

⎫
⎬

⎭

where the sum of squares (s.o.s.) multiplier σ j associated with a constraint g j (x) ≥ 0 (where
j ∈ Jk) is now a polynomial of R[X (Ik)]r−v j , i.e., in only those variables {Xi : i ∈ Ik},
and likewise for the s.o.s. polynomial ψk . In doing so, they have obtained impressive gains
in the size of the resulting SDP-relaxations, as well as in the computational time needed for
obtaining an optimal solution. For instance, if card I j ≈ κ for all j , then the sparse version
of Qr has now p O(κ2r ) variables (to compare with O(n2r )) and p LMIs of size at most
O(κr ) (to compare with one LMI of size O(nr )). If κ � n, this results in drastic computa-
tional savings! As a matter of fact, in [38] the authors were able to solve problems up to a
thousand variables in the original problem (n = 1000), that could not be handled with the
original SDP-relaxations (even for just the first SDP-relaxation only!). By using Theorem
2.7, convergence inf Qr ↑ f ∗ of such sparse SDP-relaxations is proved in Lasserre [18]. For
more details the interested reader is referred to [18,38].

4.2 Systems of polynomial equations

Finding a real solution to a system of polynomial equations is a problem with many important
applications. One way is to select a solution that minimizes some objective function f of
interest for the application concerned, and apply optimization methods like e.g. Newton’s
method. However, to be effective the latter requires a good initial guess and in addition, it
only finds a local minimum when successful.

Of course, the approach presented in Sect. 3 with now feasible set

K := { x ∈ R
n : g j (x) = 0, ∀ j = 1, . . . ,m } (4.1)

works fine with guaranteed convergence to the global optimum f ∗ if K is compact. (In case
of equality constraints Schmüdgen and Putinar representations (2.13) and (2.15) are equiva-
lent.) The interested reader is referred to Henrion and Lasserre [8] for examples of systems of
polynomial equations solved via the public software GloptiPoly [7]. Table 1 below displays
some examples of systems of polynomial equations taken from [8]. As no specific criterion to
minimize was available, in Qr we chose to minimize the sum of the diagonal elements of the
moment matrix Mr (y); see [8]. For each problem are displayed the number n of variables,
the number m of constraints, the maximum degree d of the g j ’s, the CPU time, the order r of
the relaxation Qr where the stopping criterion (3.8) for detecting optimality is met, and the
number of global minimizers obtained. It is worth noticing that in most problems, detection
of optimality occurs at a very low relaxation order r .

In a different approach, some algebraic methods have a more ambitious goal, namely to
compute all real and complex solutions. Methods can be symbolic with exact arithmetic or
symbolic-numeric. See for instance the Homotopy approach of Verschelde [37], the Gröb-
ner base approach of Rouillier [33], and the border base approaches of Zhi and Reid [32],
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Table 1 Systems of polynomial
equations

Problem name n m d CPU r Sol

discret3 8 8 2 0.31 1 1

eco5 5 5 3 5.98 3 1

eco6 6 6 3 57.4 3 1

eco7 7 7 3 256 3 1

eco8 8 8 3 1310 3 1

fourbar 4 4 4 0.16 2 1

geneig 6 6 3 33.2 3 1

heart 8 8 4 1532 3 2

i1 10 10 3 44.1 2 1

ipp 8 8 2 6.42 2 1

katsura5 6 6 2 0.74 2 1

kinema 9 9 2 26.4 2 1

ku10 10 10 2 72.5 2 1

lorentz 4 4 2 0.64 2 2

manocha 2 2 8 1.27 6 1

noon3 3 3 3 0.22 3 1

noon4 4 4 3 0.65 3 1

noon5 5 5 3 4.48 3 1

and Trébuchet and Mourrain [25]; see also Sommese and Wampler [35] and the references
therein.

Remarkably, the approach used in Sect. 3.1 adapts with no modification to the case of com-
puting all real roots of a system of polynomial equations when there are finitely many (with
m = n in (4.1)). Consider problem P in (3.1) with feasible set K ⊂ R

n as in (4.1), and choose
f ∈ R[X ] to be the constant polynomial f ≡ 1. Then all real roots are optimal solutions and
any sequence y which is the moment sequence of a measure supported on the real roots is
also feasible in every SDP-relaxation Qr defined in (3.2). Eventually, for r sufficiently large,
such sequences y are the the only feasible solutions of Qr and the stopping criterion (3.8)
is met at Qr ; for a detailed proof see [22]. In addition if one solves the SDP-relaxation Qr

with a primal-dual interior point algorithm,2 then one obtains an optimal solution y of Qr

whose associated moment matrix Mr (y) has maximum rank (among all possible solutions
y′ of Qr ), this rank s is precisely the number of distinct real solutions {x(k)}sk=1 ⊂ R

n of the
original system of polynomial equations, and y is of the form

yα =
s∑

k=1

ck x(k)α, α ∈ N
n

for some scalars ck > 0 with
∑

k ck = 1.
Let I := 〈g1, . . . , gn〉 ⊂ R[X ] be the polynomial ideal generated by the polynomials g j ’s

in the definition (4.1) of K (with m = n), and let V (I ) ⊂ C
n be the variety associated with

I (and VR(I ) = V (I )∩R
n). In fact, from such a moment matrix Mr (y), one may identify s

columns that are linearly independent. The associated monomials Xα in the canonical basis

2 This primal-dual interior point method is implemented in e.g. SeDuMi [36], one of the SDP solvers used in
GloptiPoly [7] and GloptiPoly3 [10] for solving P.
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vr (X) of R[X ]r that identify these columns, form a basis of the quotient space R[X ]/J where
J ⊂ R[X ] is the real radical ideal I (VR(I )) = I (K). One also obtains multiplication (by
Xi ) matrices Mi in the quotient algebra R[X ]/J from which in turn one may deduce all
points of K = VR(I ) = V (J ), and a Gröbner basis or a Border basis of J , as well. For more
details the interested reader is referred to Lasserre et al. [22]

4.3 The convex envelope of a rational function

We here detail how to evaluate pointwise the convex envelope f̂ of a rational function
f = p/q with p, q ∈ R[X ], on the convex hull co(K) of a basic closed semi-algebraic set
K ⊂ R

n .
Let K ⊂ R

n compact be as in (2.10) and let f̃ : R
n → R∪ {+∞} be the function defined

by:

x 	→ f̃ (x) :=
{

f (x) on K
+∞ on R

n \K.
(4.2)

Note that f̃ is lower-semicontinuous (l.s.c.), admits a minimum and its effective domain K
is non-empty and compact.

Recall that P(K) is the set of probability measures on K. For every fixed x ∈ co(K),
consider the infinite-dimensional linear program (LP)

LPx :

⎧
⎪⎨

⎪⎩

inf
µ∈P(K)

∫
f dµ

s.t.
∫

Xi dµ = xi , i = 1, . . . , n
(4.3)

with optimal value denoted by inf LPx (and min LPx if the infimum is attained).

Lemma 4.1 ([14]) Let K ⊂ R
n in (2.10) be compact. Let f := p/q with p, q ∈ R[X ], and

let f̃ be as in (4.2). Then the convex envelope f̂ of f̃ is given by:

f̂ (x) =
{

min LPx , x ∈ co(K),
+∞, x ∈ R

n\co(K),
(4.4)

and so dom f̂ = co(K).

Next, for every x ∈ R
n fixed, consider the SDP

Qr x :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

inf
y

L y(p)

s.t. L y(Xi q) = xi , i = 1, . . . , n
Mr−r j (g j y) � 0, j = 0, 1, . . . ,m,
L y(q) = 1,

(4.5)

with optimal value denoted inf Qr x , and min Qr x if the infimum is attained. Its dual is the
SDP

Q∗
r x :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

sup
γ,λ,{u j }

γ + 〈λ, x〉

s.t. p − γ q − 〈λ, X〉 q =
m∑

j=0

u j g j

u j ∈ �2, deg u j + deg g j ≤ 2r, j = 0, . . . ,m

(4.6)

with optimal value denoted sup Q∗
r x (and min Q∗

r x is the supremum is achieved).
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Theorem 4.2 (Laraki and Lasserre [14]) Let K ⊂ R
n be as in (2.10) and let Assumption 2.1

hold. Let f := p/q with p, q ∈ R[X ], and with q > 0 on K. Let f̂ be as in (4.4), and with
x ∈ co(K) fixed, consider the SDP-relaxations {Qr x } defined in (4.5)). Then:

(a) The function fr : R
n → R ∪ {+∞} defined by

x 	→ fr (x) := inf Qr x , x ∈ R
n, (4.7)

is convex, and as r → ∞, fr (x) ↑ f̂ (x) pointwise, for all x ∈ R
n. In addition the

convergence is uniform on every compact subset of co(K) where f̂ is continuous.
(b) If K has a nonempty interior int K, then

sup Q∗
r x = max Q∗

r x = inf Qr x = fr (x), x ∈ int K, (4.8)

and for every optimal solution (λ∗r , γ ∗r ) of Q∗
r x ,

fr (y)− fr (x) ≥ 〈λ∗r , y − x〉, ∀ y ∈ R
n,

that is, λ∗r ∈ ∂ fr (x).

(For a convex function h the notation ∂h(x) stands for the subdifferential of h at the
point x .) So Theorem 4.2 states that one may approximate pointwise the convex envelope
f̂ : co(K)→ R of a rational function f : K → R, by solving an appropriate SDP param-
etrized by the point x ∈ co(K) where one wishes to evaluate f̂ . This provides a convex
approximation fr with pointwise monotone convergence fr ↑ f̂ , and in fact, the conver-
gence is even uniformly on compact subsets of co(K) where f̂ is continuous.

Example 4.1 Consider the bivariate rational function f : [−1, 1]2 → R:

X 	→ f (X) := X1 X2

1+ X2
1 + X2

2

, (X1, X2) ∈ [−1, 1]2,

on [−1, 1]2 displayed in Fig. 1, with f3 as well. In Fig. 2 we have displayed ( f3− f2)which
is of the order 10−9 (which explains why for a few values of x ∈ [−1, 1]2 one may have
f3(x) ≤ f2(x) as we are at the limit of machine precision). It also means that again f2 pro-
vides a very good approximation of the convex envelope f̂ , that is, a very good approximation
is already obtained at the first relaxation (here Q2)!
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Fig. 1 Example 4.1, f and f3 on [−1, 1]2
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Fig. 2 Example 4.1, f3 − f2 and ( f3 − f2)
+ on [−1, 1]2

5 Conclusion

We have presented the moment and s.o.s. approaches in polynomial optimization, two dual
facets of the problem. Despite polynomial optimization problems are NP-hard, algebra enters
the game with powerful representation results from real algebraic geometry which permit
to define convergent and efficient SDP-relaxations. Practice seems to reveal fast and even
finite convergence. For problems with sparsity in the data, one may also define appropriate
“sparse” SDP-relaxations that are still convergent when the sparsity pattern satisfies some
property. One may then handle problems with a large number of variables. We hope to have
convinced the reader that Putinar Positivstellensatz is the nonconvex analogue in polynomial
optimization of the KKT conditions in convex programming. Finally, we have also detailed
how this approach can be applied to two related problems, namely computing all real solu-
tions of a system of polynomial equations, and pointwise computation of the convex envelope
of a rational function.

Acknowledgments This work was supported by french ANR-grant NT05-3-41612.

Appendix

Proof of Theorem3.2
(a) By Proposition 3.1 we already know that inf Qr ≤ inf P = f ∗ for all r ≥ r0. Next,

we need to prove that inf Qr > −∞ for sufficiently large r . Recall that the quadratic
module Q(g) ⊂ R[X ] generated by the polynomials {g j } ⊂ R[X ] that define K is the
set

Q(g) :=
⎧
⎨

⎩
σ ∈ R[X ] | σ =

m∑

j=0

σ j g j with {σ j }mj=0 ⊂ �2

⎫
⎬

⎭
.

In addition, let Qt (g) ⊂ Q(g) be the set of elements σ of Q(g) which have a repre-
sentation σ0 +∑m

j=0 σ j g j for some s.o.s. family {σ j } ⊂ �2 with deg σ0 ≤ 2t and
deg σ j + deg g j ≤ 2t , for all j = 1, . . . ,m.
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Let r ∈ N be fixed. Recall that K is compact and Assumption 2.1 holds. As q > 0 on
K, then q > δ on K for some scalar δ > 0. Therefore, by Theorem 2.5, q − δ ∈ Q(g).
Similarly, there exists N such that N ± Xα > 0 on K, for all α ∈ N

n with |α| ≤ 2r .
Therefore, the polynomial X 	→ N ± Xα belongs to Q(g). But there is even some l(r)
such that q−δ ∈ Ql(r)(g) and X 	→ N ± Xα ∈ Ql(r)(g) for every |α| ≤ 2r . Of course,
we also have q − δ ∈ Ql(g) and X 	→ N ± Xα ∈ Ql(g) for every |α| ≤ 2r , whenever
l ≥ l(r). Therefore, let us take l(r) ≥ r0, with r0 ≥ max j=0,...,m v j .

As q − δ ∈ Ql(r)(g), q − δ = σ0 +∑m
j=1 σ j g j , for some (σ j ) ⊂ �2 with deg σ0 ≤

2l(r) and deg σ j + deg g j ≤ 2l(r), for all j = 1, . . . ,m. Hence, for every feasible
solution y of Ql(r) (and of Ql with l ≥ l(r)),

1− δy0 = L y(q − δ) = L y(σ0)+ L y

⎛

⎝
m∑

j=1

σ j g j

⎞

⎠ ≥ 0,

where the last inequality follows from Ml(r)(y) � 0 and Ml(r)−r j (y g j ) � 0, j =
1, . . . ,m. Therefore, y0 ≤ δ−1.

Similarly, N ± Xα = σ0 +∑m
j=1 σ j g j for some (σ j ) ⊂ �2 with deg σ0 ≤ 2l(r)

and deg σ j + deg g j ≤ 2l(r), for all j = 1, . . . ,m. Hence, for same reasons as above,

N y0 ± yα = L y(N ± Xα) = L y(σ0)+
m∑

j=1

L y(σ j g j ) ≥ 0,

which implies |yα| = | L y(Xα) | ≤ N y0 ≤ Nδ−1, for all |α| ≤ 2r .
In particular, L y(p) ≥ −Nδ−1∑

α |pα|, which proves that inf Ql(r) > −∞, and so
inf Qr > −∞ for sufficiently large r .
Next, from what precedes, and with k ∈ N arbitrary, let l(k) ≥ k be such that q − δ ∈
Ql(k) and

Nk ± Xα ∈ Ql(k)(g) ∀α ∈ N
n with |α| ≤ 2k, (5.1)

for some Nk . Let r ≥ l(r0), and let yr be a nearly optimal solution of Qr with value

inf Qr ≤ L yr (p) ≤ inf Qr + 1

r

(
≤ f ∗ + 1

r

)
. (5.2)

Fix k ∈ N. Notice that from (5.1), one has

| L yr (Xα) | ≤ Nk y0 ≤ Nkδ
−1, ∀α ∈ N

n with |α| ≤ 2k, ∀ r ≥ l(k).

Therefore,

|yr
α| = | L yr (Xα) | ≤ N ′

k, ∀α ∈ N
n with |α| ≤ 2k, ∀ r ≥ r0. (5.3)

where N ′
k = max[Nkδ

−1, Vk], with

Vk := max
α,r

{ |yr
α| : |α| ≤ 2k ; r0 ≤ r ≤ l(k) }.

Complete each vector yr with zeros to make it an infinite bounded sequence in l∞,
indexed in the canonical basis in u∞(X) of R[X ]. In view of (5.3), one has yr

0 ≤ δ−1

and

|yr
α| ≤ N ′

k ∀α ∈ N
n with 2k − 1 ≤ |α| ≤ 2k, (5.4)

and for all k = 1, 2, . . ..
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Hence let ŷr ∈ l∞ be a new sequence defined by ŷr
0 = δyr

0 and

ŷr
α :=

yr
α

N ′
k
, ∀α ∈ N

n with 2k − 1 ≤ |α| ≤ 2k, ∀ k = 1, 2, . . . ,

and in l∞, consider the sequence {ŷr }r , as r →∞.
Obviously, the sequence {ŷr }r is in the unit ball B1 of l∞, and so, by the Banach-

Alaoglu theorem (see e.g. Ash [3]), there exists ŷ ∈ B1, and a subsequence {ri }, such that
ŷri → γ̂ as i →∞, for the weak � topology σ(l∞, l1) of l∞. In particular, pointwise
convergence holds, that is,

lim
i→∞ ŷri

α → ŷα ∀α ∈ N
n,

Next, define y0 = δ−1 ŷ0 and

yα := ŷα × N ′
k ∀α ∈ N

n with 2k − 1 ≤ |α| ≤ 2k, ∀ k = 1, 2, . . .

The pointwise convergence ŷri → ŷ implies the pointwise convergence yri → y, i.e.,

lim
i→∞ yri

α → yα ∀α ∈ N
n . (5.5)

Next, let r ∈ N be fixed. From the pointwise convergence (5.5) we deduce that

lim
i→∞ Mr (g j yri ) = Mr (g j y) � 0, j = 0, 1, . . . ,m.

As r was arbitrary we obtain that

Mr (g j y) � 0, j = 0, 1, . . . ,m; r = 1, 2, . . . (5.6)

By Theorem 2.5(b), (5.6) implies that y is the sequence of moments of some finite
measure µ with support contained in K.

Next, from the pointwise convergence (5.5) and the constraints of Qr , one has

1 = lim
i→∞ L yri (q) = L y(q) =

∫
q dµ,

that is, µ is a feasible solution of P . Finally, the pointwise convergence (5.5) implies
L yri (p) → L y(p) =

∫
p dµ, and so, from (5.2), we deduce that inf Qri → f ∗ =∫

p dµ, and in fact the desired result inf Qr ↑ f ∗, because the sequence {inf Qr } is
monotone nondecreasing.

Next, if K has nonempty interior then Slater condition holds for Qr . Indeed, let ν be
a probability measure with a positive density with respect to the Lebesgue measure on
K, and let dµ := q−1dν (well defined as q > 0 on K compact) so that

∫
qdµ = 1, and

µ has also a strictly positive density with respect to the Lebesgue measure. Hence, with
y = (yα) being its sequence of moments, Mr (g j y) � 0 for all j = 0, 1, . . . ,m, which
shows that y is a strictly feasible solution of Qr . Therefore, as inf Qr > −∞ for all
r sufficiently large, on also obtains sup Q∗

r = max Q∗
r = inf Qr , for all r sufficiently

large.
(b) Assume that inf Qr1 = f ∗, and let x∗ ∈ K be any global minimizer of P. Then obvi-

ously f ∗ = min Qr1 with y∗α := q(x∗)−1(x∗)α for all α ∈ N
n . In addition, as K has

nonempty interior, then by (a), min Q∗
r1
= f ∗ for some optimal solution (λ∗, {σ j }),

with value λ∗ = f ∗. Therefore,

p − f ∗q =
m∑

j=0

σ j g j .
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Evaluation at x∗ ∈ K yields

p(x∗)− f ∗q(x∗) = 0 =
m∑

j=0

σ j (x
∗)g j (x

∗) ≥ 0,

which yields the desired result σ j (x∗)g j (x∗) = 0, for all j = 0, 1, . . . ,m, because
every term in the sum is nonnegative. ��
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